An Effective Approach to Enhance Centroid Classifier for Text Categorization
نویسندگان
چکیده
Centroid Classifier has been shown to be a simple and yet effective method for text categorization. However, it is often plagued with model misfit (or inductive bias) incurred by its assumption. To address this issue, a novel Model Adjustment algorithm was proposed. The basic idea is to make use of some criteria to adjust Centroid Classifier model. In this work, the criteria include training-set errors as well as training-set margins. The empirical assessment indicates that proposed method performs slightly better than SVM classifier in prediction accuracy, as well as beats it in running time.
منابع مشابه
An improved centroid classifier for text categorization
In the context of text categorization, Centroid Classifier has proved to be a simple and yet efficient method. However, it often suffers from the inductive bias or model misfit incurred by its assumption. In order to address this issue, we propose a novel batch-updated approach to enhance the performance of Centroid Classifier. The main idea behind this method is to take advantage of training e...
متن کاملWeight Adjustment Schemes for a Centroid Based Classifier Weight Adjustment Schemes for a Centroid Based Classifier Weight Adjustment Schemes for a Centroid Based Classifier *
In recent years we have seen a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and company-wide intra-nets. Automatic text categorization, which is the task of assigning text documents to pre-specified classes (topics or themes) of documents, is an important task that can help both in organizing as well as in finding information on t...
متن کاملTowards enhancing centroid classifier for text classification - A border-instance approach
Text classification/categorization (TC) is to assign new unlabeled natural language documents to the predefined thematic categories. Centroid-based classifier (CC) has been widely used for TC because of its simplicity and efficiency. However, it has also been long criticized for its relatively low classification accuracy compared with state-of-the-art classifiers such as support vector machines...
متن کاملA Comparative Study of Centroid-Based and Naïve Bayes Classifiers for Document Categorization
Assigning documents to related categories is critical task which is used for effective document retrieval. Automatic text classification is the process of assigning new text document to the predefined categories based on its content. In this paper, we implemented and performed comparison of Naïve Bayes and Centroid-based algorithms for effective document categorization of English language text....
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007